Step of Proof: let_wf
9,38
postcript
pdf
Inference at
*
I
of proof for Lemma
let
wf
:
A
,
B
:Type,
a
:
A
,
b
:(
A
B
). let
x
=
a
in
b
(
x
)
B
latex
by ((Unfold `let` 0)
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n
C
)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
1.
A
: Type
C1:
2.
B
: Type
C1:
3.
a
:
A
C1:
4.
b
:
A
B
C1:
(
x
.
b
(
x
))(
a
)
B
C
.
Definitions
let
x
=
a
in
b
(
x
)
,
t
T
,
x
:
A
.
B
(
x
)
origin